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Parametrized Curves

Definition A parametrized differentiable curve is a differentiable map α : I → R3 of an open
interval I = (a, b) of the real line R into R3.

Note that if α : I → R3 is given by α(t) = (x(t), y(t), z(t)) for t ∈ I, then α is a differentiable
curve if and only if x(t), y(t), z(t) are differentiable (or smooth) functions on I. If α : I → R3

is differentiable, the vector α′(t) = (x′(t), y′(t), z′(t)) is called the tangent vector (or velocity
vector) of the curve α at t.

Example The helix α(t) = (a cos t, a sin t, bt), t ∈ R, is a differentiable curve on the cylinder
x2 + y2 = a2. Note that α′(t) = (−a sin t, a cos t, b) 6= (0, 0, 0), for all t ∈ R, i.e. the tangent
vector of α is not a zero vector for all t.

Example α(t) = (t3, t2), t ∈ R is a differentiable plane curve. Note that α′(0) = (0, 0), i.e. the
tangent vector is a zero vector at t = 0.

Definition A parametrized differentiable curve α : I → R3 is said to be regular if α′(t) 6= 0 ∈ R3

for all t ∈ I.
Definition Let α : I → R3, be a regular parametrized curve. Given t0 ∈ I, define the arc length
function of α from the point t0 by

s(t) =

∫ t

t0

|α′(u)| du, where |α′(u)| =
√

(x′(u))2 + (y′(u))2 + (z′(u))2 = length of α′(u).

Remarks

1. Since
ds

dt
= |α′(t)| 6= 0 for all t ∈ I, s = s(t) has a differentiable inverse t = t(s) with

dt

ds
=

1

ds/dt
.

2. If the parameter t is already the arc length measured from some point, then
ds

dt
= 1 = |α′(t)|,

i.e. the velocity vector has constant length equal to 1.

Conversely, if |α′(t)| = 1 for all t, then

s =

∫ t

t0

du = t− t0; i.e., t is the arc length of α measured from some point.

3. To simplify our exposition, we shall restrict ourselves to curves parametrized by arc length;
we shall see later (see Sec. 1-5) that this restriction is not essential. In general, it is not
necessary to mention the origin of the arc length s, since most concepts are defined only in
terms of the derivatives of α(s).

4. It is convenient to set still another convention. Given the curve α parametrized by arc
length s ∈ (a, b), we may consider the curve β defined in (a, b) by β(s) = α(−(s− a) + b),
which has the same trace as the first one but is described in the opposite direction. We say,
then, that these two curves differ by a change of orientation.

The Vector Product in R3

Definition Two ordered bases e = {ei} and f = {fi}, i = 1, . . . , n, of an n-dimensional vector
space V have the same orientation if the matrix of change of basis has positive determinant. We
denote this relation by e ∼ f.
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Remark From elementary properties of determinants, it follows that e ∼ f is an equivalence
relation; i.e., it satisfies

1. e ∼ e. [Since e = Ie and det I = 1 > 0, where I is the n× n identity matrix.]

2. If e ∼ f, then f ∼ e. [If f = Ae, then e = A−1f and detA−1 =
1

detA
> 0.]

3. If e ∼ f and f ∼ g, then e ∼ g. [If f = Ae and g = Bf, then g = BAe and det(BA) =
detB detA > 0.]

The set of all ordered bases of V is thus decomposed into equivalence classes (the elements of a
given class are related by ∼) which by property 3 are disjoint. Since the determinant of a change
of basis is either positive or negative, there are only two such classes.

Each of the equivalence classes determined by the above relation is called an orientation of V.
Therefore, V has two orientations, and if we fix one of them arbitrarily, the other one is called
the opposite orientation.

In the case V = R3, there exists a natural ordered basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
and we shall call the orientation corresponding to this basis the positive orientation of R3, the
other one being the negative orientation (of course, this applies equally well to any Rn). We
also say that a given ordered basis of R3 is positive (or negative) if it belongs to the positive (or
negative) orientation of R3. Thus, the ordered basis e1, e3, e2 is a negative basis, since the matrix
which changes this basis into e1, e2, e3 has determinant equal to −1.

Definition Let u, v ∈ R3. The vector product of u =
3∑
i=1

uiei and v =
3∑
i=1

viei (in that order) is

the unique vector u ∧ v ∈ R3 characterized by

(u ∧ v) · w = det(u, v, w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ for all w =
3∑
i=1

wiei ∈ R3,

where |aij| denotes the determinant of the matrix (aij). It is immediate from the definition that

u ∧ v =

∣∣∣∣u2 u3

v2 v3

∣∣∣∣ e1 −
∣∣∣∣u1 u3

v1 v3

∣∣∣∣ e2 +

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ e3.

Remarks

(a) It is also very frequent to write u ∧ v as u× v and refer to it as the cross product.

The following properties can easily be checked (actually they just express the usual proper-
ties of determinants):

1. u ∧ v = −v ∧ u (anticommutativity).

2. u ∧ v depends linearly on u and v; i.e., for any real numbers a, b, we have

(au+ bw) ∧ v = au ∧ v + bw ∧ v.

3. u ∧ v = 0 if and only if u and v are linearly dependent.

4. (u ∧ v) · u = 0 and (u ∧ v) · v = 0.

(b) • It follows from (a) property 4 that the vector product u∧v is normal to a plane generated
by u and v.

Page 2



Geometry Study Guide 1 (Continued)

• If u ∧ v 6= 0 ∈ R3, then det(u, v, u ∧ v) = (u ∧ v) · (u ∧ v) = |u ∧ v|2 > 0. This implies
that {u, v, u ∧ v} is a positive basis.

• Since

(ei ∧ ej) · (ek ∧ e`) =

∣∣∣∣ei · ek ej · ek
ei · e` ej · e`

∣∣∣∣ for all i, j, k, ` = 1, 2, 3,

we have the foolowing identity

(u ∧ v) · (x ∧ y) =

∣∣∣∣u · x v · x
u · y v · y

∣∣∣∣ for all u, v, x, y ∈ R3

by observing that both sides are linear in u, v, x, y.

• It follows that

|u ∧ v|2 = (u ∧ v) · (u ∧ v) =

∣∣∣∣u · u v · u
u · v v · v

∣∣∣∣ = |u|2|v|2(1− cos2 θ)= A2,

where θ is the angle of u and v, and A is the area of the parallelogram generated by u
and v.

Therefore, the vector product of u and v is a vector u∧ v perpendicular to a plane spanned
by u and v, with a norm equal to the area of the parallelogram generated by u and v and a
direction such that {u, v, u ∧ v} is a positive basis.

(c) Since
(ei ∧ ej) ∧ ek = (ei · ek)ej − (ej · ek)ei for all i, j, k = 1, 2, 3,

we have the following identity:

(u ∧ v) ∧ w = (u · w)v − (v · w)u,

by observing that both sides are linear in u, v, w. In particular, since

(e1 ∧ e2) ∧ e2 = (e1 · e2)e2 − (e2 · e2)e1 = −e1 6= 0 = e1 ∧ (e2 ∧ e2),

the vector product is not associative.

(d) Let u(t) = (u1(t), u2(t), u3(t)) and v(t) = (v1(t), v2(t), v3(t)) be differentiable maps from the
interval (a, b) to R3, t ∈ (a, b). It follows that u(t) ∧ v(t) is also differentiable and that

d

dt
(u(t) ∧ v(t)) =

du

dt
∧ v(t) + u(t) ∧ dv

dt
.

The Local Theory of Curves Parametrized by Arc Length

Let α : I → R3 be a curve parametrized by arc length s, i.e. the tangent vector α′(s) has unit
length for all s. Since α′(s) · α′′(s) = 0, α′′(s) is perpendicular to the tangent when α′′(s) 6= 0
and the norm |α′′(s)| of the second derivative measures the rate of change of the angle which
neighboring tangents make with the tangent at s. |α′′(s)| gives, therefore, a measure of how
rapidly the curve pulls away from the tangent line at s, in a neighborhood of s. This suggests
the following definition.

Definition Let α : I → R3 be a curve parametrized by arc length s ∈ I. The number |α′′(s)| =
k(s) is called the curvature of α at s.

Example If α is a straight line, α(s) = us+ v, where u and v are constant vectors with |u| = 1,
then k(s) = 0 for all s ∈ R. Conversely, if k(s) = |α′′(s)| = 0 for all s ∈ R, then by integration
α(s) = us+ v, and the curve is a straight line.

Remarks
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• Notice that by a change of orientation, the tangent vector changes its direction; that is, if
β(s) = α(−(s− a) + b), then

β′(s) = −α′(−(s− a) + b) and β′′(s) = α′′(−(s− a) + b),

i.e., α′′(s) and the curvature remain invariant under a change of orientation.

• At points where k(s) 6= 0, a unit vector n(s) in the direction α′′(s) is well defined by the
equation α′′(s) = k(s)n(s). Moreover, α′′(s) is normal to α′(s), because by differentiating
α′(s) · α′(s) = 1 we obtain α′′(s) · α′(s) = 0. Thus, n(s) is normal to α′(s) and is called
the (principal) normal vector at s. The plane determined by the unit tangent and normal
vectors, α′(s) and n(s), is called the osculating plane at s.

In what follows, we shall restrict ourselves to curves parametrized by arc length without
singular points of order 1, i.e. α′′(s) 6= 0 for all s. We shall denote by t(s) = α′(s) the unit
tangent vector of α at s. Thus, t′(s) = k(s)n(s).

• The unit vector b(s) = t(s) ∧ n(s) normal to the osculating plane and will be called the
binormal vector at s. Since b(s) is a unit vector, the length |b′(s)| measures the rate of
change of the neighboring osculating planes with the osculating plane at s; that is, |b′(s)|
measures how rapidly the curve pulls away from the osculating plane at s, in a neighborhood
of s.
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To compute b′(s) we observe that, on the one hand, b′(s) is normal to b(s) and that, on the
other hand,

b′(s) = t′(s) ∧ n(s) + t(s) ∧ n′(s) = t(s) ∧ n′(s)

that is, b′(s) is normal to t(s). It follows that b′(s) is parallel to n(s), and we may write

b′(s) = τ(s)n(s) for some function τ(s).

Definition Let α : I → R3 be a curve parametrized by arc length s such that α′′(s) 6= 0 for each
s ∈ I. The number τ(s) defined by b′(s) = τ(s)n(s) is called the torsion of α at s.

Note that by changing orientation the binormal vector changes sign, since b(s) = t(s) ∧ n(s). It
follows that b′(s), and, therefore, the torsion, remain invariant under a change of orientation.

Example If α is a plane curve (that is, α(I) is contained in a plane), then the plane of the curve
agrees with the osculating plane; hence, τ(s) = 0 for all s ∈ I.
Conversely, if τ(s) = 0 (and k(s) 6= 0) for each s ∈ I, we have b(s) = b0 = constant vector, and
therefore

(α(s) · b0)′ = α′(s) · b0 = 0 for all s ∈ I =⇒ α(s) · b0 = constant for all s ∈ I.

Hence, α(s) is contained in a plane normal to b0. The condition that k(s) 6= 0 everywhere is
essential here. For example, consider the regular curve

α(t) =


(t, 0, e−1/t2), t > 0

(t, e−1/t2 , 0), t < 0

(0, 0, 0), t = 0

=⇒ α′(t) =


(1, 0,

2

t3
e−1/t2), t > 0

(1,
2

t3
e−1/t2 , 0), t < 0

(1, 0, 0), t = 0

Using the Sec. 1-5 Exercises 12, one can show that k(0) = 0 and the torsion τ ≡ 0 even though
α is not a plane curve.

Definition Let α : I → R3 be a curve parametrized by arc length s such that α′′(s) 6= 0 for
each s ∈ I. To each value of the parameter s, we have associated three orthogonal unit vectors
t(s), n(s), b(s), called the Frenet trihedron at s, determined by the Frenet formulas

t′(s) = k(s)n(s),

n′(s) = −k(s) t(s)− τ(s) b(s),

b′(s) = τ(s)n(s).

Example If α : I → R3 is a curve parametrized by arc length s satisfying that α′′(s) 6= 0 for

each s ∈ I, then t(s) = α′(s), n(s) =
α′′(s)

|α′′(s)|
, b(s) =

α′(s) ∧ α′′(s)
|α′′(s)|

and n′(s) =
α′′′(s)

|α′′(s)|
− α

′′(s)〈α′′(s), α′′′(s)〉
|α′′(s)|3

=⇒ τ(s) = −〈n′(s), b(s)〉 = −〈α
′(s) ∧ α′′(s), α′′′(s)〉
|α′′(s)|2

.

Example If α : I → R3 is a regular curve parametrized by u and if s = s(u) is an arc length

parameter, then
du

ds
=

1

|α′(u)|
,
d2u

ds2
=

d

du

(
du

ds

)
· du
ds

= −〈α
′(u), α′′(u)〉
|α′(u)|4

, and

k(u) =

∣∣∣∣d2α

ds2
∧ dα
ds

∣∣∣∣ =

∣∣∣∣[α′′(u) (
du

ds
)2 + α′(u)

d2u

ds2

]
∧ α′(u)

du

ds

∣∣∣∣ =
|α′(u) ∧ α′′(u)|
|α′(u)|3

,
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τ(s) = −〈α
′(s) ∧ α′′(s), α′′′(s)〉
|α′′(s)|2

= −
〈(du
ds

)3 · α′(u) ∧ α′′(u), α′′′(u) (
du

ds
)3 + 3α′′(u)

du

ds

d2u

ds2
+ α′(u)

d3u

ds3
〉

|α′(u) ∧ α′′(u)|2/|α′(u)|6

= −〈α
′(u) ∧ α′′(u), α′′′(u)〉
|α′(u) ∧ α′′(u)|2

.

Remarks

• In this context, the points α(s) where α′(s) = 0 are called a singular point of order 0 and
the points α(s) where α′′(s) = 0 are called singular points of order 1.

• If α : I → R3 is a curve parametrized by arc length s such that α′′(s) 6= 0 for each s ∈ I,
then R =

1

k(s)
=

1

|α′′(s)|
is called the radius of curvature at s. Of course, one can easily

show that a circle of radius r has radius of curvature equal to r.

• Physically, we can think of a curve in R3 as being obtained from a straight line by bending
(curvature) and twisting (torsion). After reflecting on this construction, we are led to
conjecture the following statement, which, roughly speaking, shows that k and τ describe
completely the local behavior of the curve.

Fundamental Theorem of The Local Theory of Curves Given differentiable functions
k(s) > 0 and τ(s), s ∈ I, there exists a regular parametrized curve α : I → R3 such that s is
the arc length, k(s) is the curvature, and τ(s) is the torsion of α. Moreover, any other curve ᾱ,
satisfying the same conditions, differs from α by a rigid motion; that is, there exists an orthogonal
linear map ρ of R3, with positive determinant, and a vector c ∈ R3 such that ᾱ = ρ ◦ α + c.

Proof of Uniqueness Assume that two curves α = α(s) and ᾱ = ᾱ(s) satisfy the conditions
k(s) = k̄(s) and τ(s) = τ̄(s), s ∈ I. Let t0, n0, b0 and t̄0, n̄0, b̄0 be the Frenet trihedrons at
s = s0 ∈ I of α and ᾱ, respectively. Clearly, there is a rigid motion which takes ᾱ(s0) into
α(s0) and t̄0, n̄0, b̄0 into t0, n0, b0. Thus, after performing this rigid motion on ᾱ, we have that
ᾱ(s0) = α(s0).

By using the Frenet equations for both Frenet trihedrons t(s), n(s), b(s) and t̄(s), n̄(s), b̄(s) with
the conditions t(s0) = t̄(s0), n(s0) = n̄(s0), b(s0) = b̆(s0), we have

1

2

d

ds
{|t(s)− t̄(s)|2 + |n(s)− n̄(s)|2 + |b(s)− b̄(s)|2}

= 〈t(s)− t̄(s), t′(s)− t̄′(s)〉+ 〈b(s)− b̄(s), b′(s)− b̄′(s)〉+ 〈n(s)− n̄(s), n′(s)− n̄′(s)〉
= k(s)〈t(s)− t̄(s), n(s)− n̄(s)〉+ τ(s)〈b(s)− b̄(s), n(s)− n̄(s)〉
−k(s)〈n(s)− n̄(s), t(s)− t̄(s)〉 − τ(s)〈n(s)− n̄(s), b(s)− b̄(s)〉

= 0 for all s ∈ I

Thus, the above expression is constant, and, since it is zero for s = s0, it is identically zero. It
follows that t(s) = t̄(s), n(s) = n̄(s), b(s) = b̄(s) for all s ∈ I. Since

dα

ds
(s) = t(s) = t̄(s) =

dᾱ

ds
(s) =⇒ d(α− ᾱ)

ds
(s) = 0 for all s ∈ I =⇒ α(s) = ᾱ(s) + a,

where a is a constant vector. Since α(s0) = ᾱ(s0), we have a = 0; hence, α(s) = ᾱ(s) for all
s ∈ I.
The Local Canonical Form Let α : I → R3 be a curve parametrized by arc length without
singular points of order 1. We shall write the equations of the curve, in a neighborhood of s0,
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using the trihedron t(s0), n(s0), b(s0) as a basis for R3. We may assume, without loss of generality,
that s0 = 0, and we shall consider the (finite) Taylor expansion

α(s) = α(0) + sα′(0) +
s2

2
α′′(0) +

s3

6
α′′′(0) +R(s), where lim

s→0

R(s)

s3
= 0.

Since α′(0) = t(0), α′′(0) = k(0)n(0) and

α′′′(0) = (kn)′(0) = k′(0)n(0) + k(0)n′(0) = k′(0)n(0)− k2(0) t(0)− k(0)τ(0) b(0),

we obtain

α(s)− α(0) =

(
s− s3k2(0)

3!

)
t(0) +

(
s2k(0)

2
+
s3k′(0)

3!

)
n(0)− s3

3!
k(0)τ(0)b(0) +R(s).

Let us now take the system Oxyz in such a way that the origin O agrees with α(0) and that
t(0) = (1, 0, 0), n(0) = (0, 1, 0), b(0) = (0, 0, 1). Under these conditions, the local canonical form
of α(s) = (x(s), y(s), z(s)), in a neighborhood of s = 0 is given by

x(s) = s− s3k2(0)

6
+Rx,

y(s) =
s2k(0)

2
+
s3k′(0)

6
+Ry,

z(s) = −s
3k(0)τ(0)

6
+Rz,

where R(s) = (Rx, Ry, Rz).

Example Using the local canonical form for ᾱ and α, we have

k̄(0) = lim
s→0

2ȳ(s)

s2
≥ lim

s→0

2y(s)

s2
= k(0).
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x

y

α
ᾱ

s

(s, ȳ(s))

(s, y(s))

The Isoperimetric Inequality

This is perhaps the oldest global theorem in differential geometry and is related to the following
(isoperimetric) problem. Of all simple closed curves in the plane with a given length `, which
one bounds the largest area? In this form, the problem was known to the Greeks, who also knew
the solution, namely, the circle.

Definitions A closed plane curve is a regular parametrized plane curve α : [a, b]→ R2 such that
α and all its derivatives agree at a and b; that is,

α(a) = α(b), α′(a) = α′(b), α′′(a) = α′′(b), . . .

The curve α is simple if it has no further self-intersections; that is, if t1, t2 ∈ [a, b), t1 6= t2, then
α(t1) 6= α(t2).

We usually consider the curve α : [0, `]→ R2 parametrized by arc length s; hence, ` is the length
of α. Sometimes we refer to a simple closed curve C, meaning the trace of such an object.

We assume that a simple closed curve C in the plane bounds a region of this plane that is called
the interior of C. This is part of the so-called Jordan curve theorem, which does not hold, for
instance, for simple curves on a torus (the surface of a doughnut). Whenever we speak of the
area bounded by a simple closed curve C, we mean the area of the interior of C. We assume
further that the parameter of a simple closed curve can be so chosen that if one is going along
the curve in the direction of increasing parameters, then the interior of the curve remains to the
left. Such a curve will be called positively oriented.

The Isoperimetric Inequality Let C be a simple closed plane curve with length `, and let A
be the area of the region bounded by C. Then

`2 − 4πA ≥ 0, and equality holds if and only if C is a circle.

Proof Let E and E ′ be two parallel lines which do not meet the closed curve C, and move them
together until they first meet C. We thus obtain two parallel tangent lines to C, L and L′, so that
the curve is entirely contained in the strip bounded by L and L′. Consider a circle S1 which is
tangent to both L and L′ and does not meet C. Let O be the center of S1 and take a coordinate
system with origin at O and the x axis perpendicular to L and L′. Parametrize C by arc length,
α(s) = (x(s), y(s)), so that it is positively oriented and the tangency points of L and L′ are s = 0
and s = s1, respectively.
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We can assume that the equation of S1 is

ᾱ(s) = (x̄(s), ȳ(s)) = (x(s), ȳ(s)), s ∈ [0, `].

Let 2r be the distance between L and L′. By using the Green’s Theorem and denoting by Ā the
area bounded by S1, we have

A =

∫ `

0

xy′ ds, Ā = πr2 = −
∫ `

0

ȳx′ ds.

Thus,

A+ πr2 =

∫ `

0

(xy′ − ȳx′) ds
(∗)
≤
∫ `

0

√
(xy′ − ȳx′)2 ds

(∗∗)
≤

∫ `

0

√
(x2 + ȳ2)((x′)2 + (y′)2) ds =

∫ `

0

√
(x̄2 + ȳ2) ds

= `r,

where we used that the inner product of two vectors v1 and v2 satisfies

|(v1 · v2)|2 ≤ |(v1)|2|(v2)|2.

We now notice the fact that the geometric mean of two positive numbers is smaller than or equal
to their arithmetic mean, and equality holds if and only if they are equal. lt follows that
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√
A
√
πr2

(†)
≤ 1

2
(A+ πr2) ≤ 1

2
`r =⇒ 4πAr2 ≤ `2r2 =⇒ 4πA ≤ `2.

Suppose that the equality 4πA = `2 holds. Then equality must hold everywhere in (∗), (∗∗) and
(†).
From the equality in (†), we have A = πr2, ` = 2πr and r does not depend on the choice of the
direction of L.

Furthermore, equality in (∗) and (∗∗) imply that

(x, ȳ) = λ(y′,−x′)

that is,

λ =
x

y′
=

ȳ

−x′
=
±
√
x2 + ȳ2√

(y′)2 + (x′)2
= ±r.

Thus, we obtain that x = ±ry′.
Since r does not depend on the choice of the direction of L, by using a counterclockwise rotation
of π/2 and a translation of xy coordinates (x̃, ỹ) = (y − y0,−x− x0), we obtain

x̃ = ±rỹ′ ⇐⇒ y − y0 = ∓rx′.

Thus,
x2 + (y − y0)2 = r2((x′)2 + (y′)2) = r2

and C is a circle, as we wished.

Remarks

1. It is easily checked that the above proof can be applied to C1 curves, that is, curves α(t) =
(x(t), y(t)), t ∈ [a, b], for which we require only that the functions x(t), y(t) have continuous
first derivatives (which, of course, agree at a and b if the curve is closed).

2. The isoperimetric inequality holds true for a wide class of curves. Direct proofs have been
found that work as long as we can define arc length and area for the curves under consider-
ation. For the applications, it is convenient to remark that the theorem holds for piecewise
C1 curves, that is, continuous curves that are made up by a finite number of C1 arcs. These
curves can have a finite number of corners, where the tangent is discontinuous.
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